2 HANS { CHRISTOPH KAISER AND JOACHIM REHBERGOn Stationary Schr

نویسنده

  • JOACHIM REHBERG
چکیده

We regard the Schrr odinger{Poisson system arising from the modelling of an electron gas with reduced dimension in a bounded up to three{ dimensional domain and establish the method of steepest descent. The electro-static potentials of the iteration scheme will converge uniformly on the spatial domain. To get this result we investigate the Schrr odinger operator, the Fermi level and the quantum mechanical electron density operator for square integrable electrostatic potentials. On bounded sets of potentials the Fermi level is continuous and bounded, and the electron density operator is monotone and Lipschitz continuous. | As a tool we develop a Riesz{Dunford functional calculus for se-mibounded self{adjoint operators using paths of integration which enclose a real half axis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A quantum transmitting Schrödinger-Poisson system

We consider a stationary Schrödinger-Poisson system on a bounded interval of the real axis. The Schrödinger operator is defined on the bounded domain with transparent boundary conditions. This allows to model a non-zero current flow trough the boundary of the interval. We prove that the system always admits a solution and give explicit a priori estimates for the solutions. 2000 Mathematics Subj...

متن کامل

Classical solutions of quasilinear parabolic systems on two dimensional domains

Using a classical theorem of Sobolevskii on equations of parabolic type in a Banach space and recently obtained results on elliptic operators with discontinuous coefficients including mixed boundary conditions we prove that quasilinear parabolic systems in diagonal form admit a local, classical solution in the space of p–integrable functions, for some p > 1, over a bounded two dimensional space...

متن کامل

Optimal elliptic regularity at the crossing of a material interface and a Neumann boundary edge

We investigate optimal elliptic regularity of anisotropic div–grad operators in three dimensions at the crossing of a material interface and an edge of the spatial domain on the Neumann boundary part within the scale of Sobolev spaces.

متن کامل

Classical solutions of drift – diffusion equations for semiconductor devices : the 2 d case

We regard drift–diffusion equations for semiconductor devices in Lebesgue spaces. To that end we reformulate the (generalized) van Roosbroeck system as an evolution equation for the potentials to the driving forces of the currents of electrons and holes. This evolution equation falls into a class of quasi-linear parabolic systems which allow unique, local in time solution in certain Lebesgue sp...

متن کامل

Optimal Sobolev Regularity for Linear Second-Order Divergence Elliptic Operators Occurring in Real-World Problems

On bounded domains Ω ⊂ R, we consider divergence-type operators −∇ · μ∇, including mixed homogeneous Dirichlet and Neumann boundary conditions on ∂Ω \ Γ and Γ ⊂ ∂Ω, respectively, and discontinuous coefficient functions μ. We develop a general geometric framework for Ω, Γ and μ in which it is possible to prove that −∇ · μ∇ + 1 provides an isomorphism from W 1,q Γ (Ω) to W Γ (Ω) for some q > 3. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995